

Exploring Implementation Methods to Generate an Accurate
Representation of the Night Sky for use in Virtual Reality

Anna Sikkink
asikkink@hawaii.edu

Information and Computer Sciences
University of Hawaiʻi at Mānoa

Advisor: Dr. Jason Leigh

mailto:asikkink@hawaii.edu

Abstract

In this paper I investigate three methods to generate an accurate representation of the night sky
and determine their suitability for use in Virtual Reality (VR). Developed in Unity3D, these
implementations were created with 1) GameObjects, 2) ParticleSystem, and 3) Unity’s Data
Oriented Technology Stack (DOTS). Comparing the performance of these three versions
through a series of tests, the DOTS implementation was found to maintain target frame times
across all tests, which included visualizing all stars from the Hipparcos star catalog. This project
will be integrated into the next iteration of the Kilo Hōkū VR application, which will allow my
development team and I to make the application more accessible as an educational tool.

Background

Kilo Hōkū VR, a virtual reality simulation of sailing on the double-hulled sailing canoe Hōkūleʻa,
began as a class project in 2016, developed by Patrick Karjala, Kari Noe, Dean Lodes, and me.
Our initial goal was to discover how a virtual reality (VR) environment could aid in the learning
and teaching of Modern Hawaiian wayfinding. Users experience being onboard the Hōkūleʻa on
the open ocean, where they can view stars and highlight constellations, and see the Hawaiian
star compass in context. With these tools, users can apply Modern Hawaiian wayfinding
techniques to navigate and sail the Hōkūleʻa between two Hawaiian islands. Teachers are also
able to test a user’s existing knowledge within the virtual environment through use of a teacher
controller, which allows them to turn on or off specific features in the simulation, such as the star
compass, celestial equator or meridian lines, and change the time or location of the user[1].

Figure 1: Kilo Hōkū VR from a user’s view within virtual reality at the start of the simulation[1]

Kilo Hōkū VR was developed using the Unity3D game engine and was originally designed for
the HTC Vive VR headset. The Vive headset was chosen due to the fidelity of tracking, which
helped in making the simulation easier to use so that it would be more approachable, especially
for users new to virtual reality environments[3]. Version 1.0 of Kilo Hōkū VR was released in

2020 on itch.io, making it available for anyone with access to the Vive to download and use[2].
Kilo Hōkū VR has since undergone continual development and experimentation as my team and
I work to build the simulation into a more effective teaching tool. In collaborating with outside
stakeholders to further develop the application, it became apparent that several significant
changes would be needed for the simulation to become more accessible to educators.

Figure 2: a user highlighting a constellation in Kilo Hōkū VR under instructor guidance[1]

My development team determined that the most beneficial update to the application would be to
port it to a more approachable VR headset. The Vive headset connects to a computer, which
runs the VR application and sends the visuals out to the headset display. To track the player’s
movements, lighthouse boxes are mounted around the space that send out infrared lasers,
which the Vive headset and controllers detect and use to generate positional information for the
VR application. To run the Vive, a computer is required with the specifications of: an Intel Core
i5-4590/AMD FX 8350 Processor, an NVIDIA GeForce GTX 1060 or AMD Radeon RX 480
GPU, and at least 4GB RAM[4].

The Meta Quest 2 (previously Oculus Quest 2) is not only more affordable than the Vive, but
also operates as a standalone device which does not require tethering to a computer, and uses
inside-out tracking which removes the need for external equipment such as lighthouses. This is
favorable for classrooms as they would only need to purchase the Quest 2 headset to run the
application. The lower cost of the Quest 2 also means that educators would be able to purchase
more Quest 2 headsets overall, instead of needing to purchase both a headset and a computer
that meets the required specifications. Additionally, there is much less setup required with the
Quest 2, increasing the ease of use in a classroom setting.

However, the Quest 2’s specs include a Qualcomm Snapdragon XR2 processor, Adreno 650
GPU, and 6GB of RAM[5], which is less processing power than we would get from a computer
running the Vive. Due to these hardware limitations, many adjustments needed to be made to
the Kilo Hōkū VR simulation to ensure it not only runs on the hardware, but also at a high
enough frame rate to keep users from getting simulation sickness. Applications running below

60 frames per second (FPS) can cause simulation sickness in VR, while applications running at
120 FPS and above has shown better user performance and VR experience overall[6].

With support and feedback from stakeholders, my development team has produced a functional
Quest 2 port of Kilo Hōkū VR, with a public release planned for later this year.

Motivation

Another significant update needed for Kilo Hōkū VR was to improve the original implementation
of the sky to allow for more precise interactions and improved accuracy of the sky visualization.
Therefore, I chose to explore different methods of implementing a generated sky for VR for my
master’s capstone project. The initial implementation of the sky in Kilo Hōkū VR consisted of a
sphere object with reversed normals to display a texture on the inside of the sphere. A “star
field” texture was created using a high resolution full sky image from NASA’s Scientific
Visualization Studio, then applied to the sphere[3]. This created a virtual celestial sphere,
appearing like a dome with the user and Hōkūleʻa inside at the center, from which the user
would see the stars around them as if they were looking at a clear night sky.

Figure 3: The concept of a celestial sphere is an imaginary sphere with the Earth at the center.
Looking overhead, we see the half of the sphere as the sky as we see from Earth, appearing as

a dome. The other half of the sphere is below the horizon and not visible[21]

In order to allow users to point at the sky to identify constellations and Hawaiian starlines,
collider boxes were manually added around each group of stars included in a constellation.
Upon triggering the collider with a raycast, which is presented as a laser pointer in the

simulation, the texture on the celestial sphere object is swapped out with another texture with
the constellation lines shown for the corresponding constellation.

Figure 4 (left): VR view of a user highlighting a constellation in Kilo Hōkū VR

Figure 5 (right): Kilo Hōkū VR’s celestial sphere with constellation colliders as seen externally[1]

This method was a simple way to create a mostly accurate sky and include the interactions we
wanted, but it could not be easily improved upon in its current state. With 90 texture images (88
western constellations, the Hawaiian starlines, and the default sky with no lines or constellations
highlighted), each at a resolution of 8192px by 4096px as required to keep the image clear in
VR, the act of constantly swapping the individual textures on the celestial sphere is not very
efficient. Adding the ability to highlight individual stars or show other cultural constellations
would not be a quick addition as colliders would need to be manually added in the Unity Editor,
since there isn't any positional data for the stars in the simulation.

Additionally, some visual defects are apparent in the star positions and appearances near the
poles where the texture doesn’t match up properly on the sphere. This is problematic because
the north star (Polaris/Hōkūpaʻa) is a significant star in Hawaiian wayfinding, as part of Ka
Iwikuamoʻo, “The Backbone” Hawaiian starline. Not only is Polaris/Hōkūpaʻa a quick way to
orient cardinal direction since the star is nearly directly on the north celestial pole, but the Ka
Iwikuamoʻo starline runs from this star across the sky to the Southern Cross constellation, also
known as Hānaiakamalama, which is near the south celestial pole[11].

Figure 6 (top): Visual defects near the north celestial pole. Polaris/ Hōkūpaʻa star appears like

an arrow shape, and the stars around it are stretched out into lines.
Figure 7 (bottom): The same region of sky as Figure 6, as displayed in Stellarium,

demonstrating a correct visualization of these stars.

The Pleiades, known as Makali‘i, is a cluster of seven small stars. They rise before the stars in
the Hawaiian starline of “Ke Ka o Makali‘i”, and are used as a visual guide during the first month
of the year (November – December)[11]. Unfortunately, in Kilo Hōkū VR, they don’t display true to
real life due to the texture resolution, which was reportedly confusing students who were using
the app in a classroom setting. Generating these stars will improve the clarity of the visualization
compared to using the texture image, resolving this issue.

Figure 8 (left): The Pleiades/ Makali‘i as they are displayed in Kilo Hōkū VR, which appears
blurred and individual stars are less distinct.

Figure 9 (right): The Pleiades star cluster as displayed in Stellarium, which is truer to reality.

Ultimately, generating the stars based off of star catalog data will help resolve these visual
issues in addition to providing added possibilities to improve interactions and display other
useful information in the application.

Approach

My goal with this project was to create a new virtual celestial sphere which could be utilized in
Kilo Hōkū VR, one in which each star would be generated based on positional and
observational data from a star catalog. With the star position data in the simulation, the stars
themselves will appear clearer and accurately placed. The Hawaiian starlines, constellation
lines, and colliders can also be generated from the positional data, instead also of needing to
manually create them as was done in Kilo Hōkū VR 1.0, while retaining the interactivity aspects
needed. This also gives us more flexibility in adding in other cultural constellations or helpful
visuals in the future as well. Generating each star also makes it possible to make them
individually interactable, meaning the user could point at any star and view relevant information
such as star name, which constellation or Hawaiian starline it belongs to, and any other facts we
want to display.

This generated starfield needs to run alongside the other elements of our Kilo Hōkū VR
simulation, which include the ocean system, the Hōkūleʻa model, the star compass, the meridian
and celestial equator lines, and the island models. In addition, it needs to be able to run in

virtual reality, ultimately on a less robust hardware device such as the Quest 2. To determine a
suitable solution which meets the aforementioned requirements, I created a series of
implementations which used different methods to generate the stars with the intent to compare
them to discern the most efficient and effective method to use for the next version of Kilo Hōkū
VR.

Method

In Unity, I developed three implementations of a generated starfield using different methods to
create stars: stars as standard GameObjects, stars as individual particles in Unity’s
ParticleSystem, and stars as entities using Unity’s new Data Oriented Technology Stack
(DOTS).

Independent of implementation method, in order to create an accurate representation of the sky,
star data from a catalog needs to be imported into the simulation. The celestial sphere in Kilo
Hōkū VR is intended to be a tool for learning the Hawaiian starlines and constellations to build
the visual recognition skills needed to navigate using Hawaiian wayfinding techniques.
Therefore, it is most important to display the stars which are visible to the naked eye. I decided
to use the Hipparcos catalog (HIP), which was updated with re-processed data in 2007 and
contains 117,955 stars[13]. The HIP catalog was created from data obtained by the HIPPARCOS
space astrometry satellite, with the goal of determining parallaxes of stars that were brighter
than around +12.4 in apparent magnitude[19]. For context, the apparent brightest star from Earth,
Sirius, is a magnitude of -1.5, and the naked eye limit is about +6.5[17], so the data from HIP
provides stars with magnitudes beyond only the stars needed for visualizing in Kilo Hōkū VR.

Figure 10: A chart of apparent magnitude scale[17]

The HIP catalog can be downloaded from the Vizier Catalogue Service[13] and stored as a CSV
file, then read into the Unity scene via a C# script using the System.IO file reading methods.
From there, the imported data gives us coordinates for each star, which are used to place the
stars in their correct locations in the scene to create a virtual celestial sphere. Star coordinates
are given in two numbers, Declination and Right Ascension. These are analogous to latitude
and longitude coordinates on the Earth.

Declination is the angle of a star away
from the celestial equator, an
imaginary line around the middle of
the celestial sphere which is on the
same plane as the Earth’s equator.
Celestial bodies to the north of the
celestial equator have positive
declinations up to +90 degrees (the
north celestial pole), while bodies
south of the celestial equator have
negative declinations up to -90
degrees (the south celestial pole)[21].

Right Ascension gives the position of
a celestial body in relationship to lines
from the north to south celestial poles,
like longitude lines, which intersect
the celestial equator at right angles.
Right Ascension is given in hours and
minutes, with 0 and 24 hours equal to
the same point. 24 hours is used
because the Earth rotates once every
24 hours, which equals one revolution
of the celestial sphere. The zero point

for Right Ascension is based on the position of the sun at vernal equinox[21]. In the HIP catalog,
the Right Ascension has already been converted into a value in degrees.

These coordinate values can be converted into x,y,z coordinates using a spherical to cartesian
conversion formula. Given a radius value (pre-defined at 1000 for this project), the Right
Ascension (ra) and Declination (dec) values are plugged into the conversion formula, producing
3D coordinates (x,y,z) at which to place each star in the Unity scene.

Figure 12: Code used to convert star coordinates in RA and Dec into 3D coordinates.

The catalog also provides recorded magnitude values for each star. That value can be used to
adjust the scale of the star in the simulation, so higher magnitude stars appear larger in the
virtual celestial sphere. This magnitude value can also be used to determine which stars to
display or omit based on a threshold, for example, displaying only prominent stars (above +5.5
magnitude, 2617 stars from the HIP catalog) or only stars visible to the naked eye (above +6.5
magnitude, 7982 stars). These thresholds are used later in comparing the efficacy of the
different methods of implementing the virtual sky.

Figure 11: Right Ascension and Declination on the
celestial sphere[18]

Figure 13: The stars in the constellation of Orion with a red laser pointer, as seen from inside
the generated celestial sphere in VR. Stars are placed and sized based on data from the HIP

catalog.

The HIP catalog was also used by Stellarium, a free, open-source planetarium software
available for desktop and mobile devices[8]. Stellarium developers created a series of
constellationship files, which map out which stars are connected to other stars within each
constellation[9]. Since these mappings are based on HIP catalog star data, and Stellarium has
given permission to use their constellationship files[10], they can also be imported into this
simulation project to generate the lines to create the western constellations and Hawaiian
starlines. Although these constellationship files could be created manually, being able to use the
files from Stellarium saved a lot of time and allowed me to avoid re-doing work that has already
been done.

Figure 14: Hawaiian Starlines constellationship file from Stellarium, which links star IDs to other
stars which they are connected to in the same constellation, making it possible to generate the
corresponding lines in the simulation when combined with the HIP catalog star position data.

Figure 15 (left): External view of a generated celestial sphere with constellation lines.
Figure 16 (right): External view of a generated celestial sphere with Hawaiian starlines in green.

GameObject Implementation

GameObjects are the fundamental objects in Unity that represent the elements in a game or
application, such as characters, props, lights, cameras, etc. Properties are given to
GameObjects via components. Depending on what kind of object is needed, different
combinations of components are added to a GameObject[14]. Prefabs can be created from
GameObjects to be used as a template and reused in the project without having to be
reconfigured.

For this implementation, each star is represented by a GameObject prefab with a sphere mesh.
A star generator script was created to instantiate each star GameObject in the scene, based on
the star catalog position data, and scale the GameObject using the corresponding magnitude
value. Constellations and Hawaiian starlines were added to the scene using Unity’s
LineRenderer class based on the star position data described in the constellationship files.
Colliders are generated around these lines and set to detect when the user’s laser collides,
displaying the constellations western name and Hawaiian name, if applicable.

ParticleSystem Implementation

Unity’s built-in ParticleSystem simulates behavior for individual particles and renders many
small images to create a visual effect. Each particle in the system represents a graphical
element and are all simulated collectively to create impressions of a complete effect. This is
useful when rendering dynamic or non-solid objects, such as smoke or fire. The built-in particle

system also allows particles to interact with Unity’s underlying physics system, so collision
events can be detected on individual particles[15].

The implementation of this system consisted of creating a ParticleSystem in the Unity scene,
and then using a script to populate the ParticleSystem Particle array with each star, specifying
its position and size. After all star particles have been added to the particle array, the
SetParticles function is called on the ParticleSystem, which adds the particles to the scene and
renders them. Constellation and starlines are generated in the same way as described above in
the GameObject implementation.

DOTS Implementation

The final implementation uses Unity’s Data Oriented Tech Stack, or DOTS, a combination of
technologies and packages that provide a data-oriented design approach to building games and
simulations in Unity[7]. At the time of creating this implementation, the DOTS Entities package
version 1.0 (also known as Entity Component System or ECS) is in pre-release, so an official
release is still in active development by Unity[25].

Since simulating the full catalog of stars is quite intensive in addition to supporting virtual reality,
making the most efficient use of the CPU processing power is important. Developing with data-
oriented design (DOD) can aid developers in gaining the performance needed for intensive
data-focused applications. Utilizing ECS requires a shift in approach from the object-oriented
programming (OOP) paradigm to data-oriented design. Developers must consider what data is
needed for their application and how to best structure it in memory so the CPU can efficiently
access the data while running the systems to process it. Instead of having individual objects
with specific components on each (such as color or position), in DOD these components would
be grouped together into arrays so that systems can iterate over the arrays to transform data[20].

Figure 17: A comparison of how data is processed with OOP and DOD[20]

Figure 17 shows the difference between how the CPU processes an example scene with
Sphere classes using OOP and DOD. The Unity DOTS best practices guide describes Figure
17 as follows: “In OOP, the code iterates over an array of Sphere classes to check the Color of
each one and set the Position of the green ones. Although the array is packed with contiguous
data, it only contains references to Sphere classes, and the actual data can be scattered
throughout memory, resulting in cache misses. In DOD, Spheres are decomposed into Color
and Position components and packed into buffers, resulting in fewer cache misses and much
faster processing”[20].

In Unity’s ECS, an entity is a lightweight, unmanaged alternative to a GameObject, and is
essentially a unique identified number. Data for each entity is stored as associate components,
usually in the form of struct values. Aspects in ECS are also useful as they provide an object-
like wrapper over an entity’s components, defining accessible and modifiable component
values, and simplifying component-related code[23].

A collection of entities is known as a world. A world also owns a set of systems, which are run
on the main thread, typically once per frame. These systems are used to apply logic to the
entities and to transform data[23]. Another benefit of ECS is that it makes it possible for
developers to take advantage of Unity’s Burst compiler for performance gains. There are two
types of systems in ECS, the first is the ISystem, which is compatible with Burst and therefore
provides better performance, while the other is SystemBase, which is slower than ISystem since
it is not Burst compiled but allows for use of managed code[22].

Implementing the celestial sphere in ECS is a bit more involved than the other two methods
described previously. Essentially, each star is generated as an entity based on the star prefab
used in the GameObject implementation. To do this, a subscene must be created in the Unity
scene, which will contain the entities. A parent “Starfield” entity is created using an
implementation of the Baker
Authoring class, which is done in a
C# script. This same script contains
a MonoBehavior class (Unity’s base
class) that have variable
declarations for StarfieldRadius
(celestial sphere radius value used
in converting star coordinates),
StarCount (number of stars to
generate), and StarPrefab (prefab
to create our stars from), which can
be accessed and adjusted from the
Unity editor. Those values are then
used in the Baker class when
adding the component to the
starfield.

The Baker class creates the
starfield entity and sets the values
for StarfieldRadius, StarCount, and
the StarPrefab using a component
struct called “StarfieldProperties”.
These values are made accessible by
systems and other entities via an

Figure 18: Code to author the Starfield parent entity.

aspect struct called “Starfield Aspect”. Another Baker class is needed to author individual star
entities, which is done in a separate system script.

There are two systems at work in this implementation, the first is called “StarfieldGenerator”,
which implements ECS ISystem and instantiates the star entities in the subscene. These
entities are all first initialized at the zero point in the scene (0,0,0) at a scale of 1. The second
system implements SystemBase. This system, called “StarPlacement”, imports the HIP catalog
data, and schedules jobs to update the star entities to their correct positions in the scene and
adjust the scale of star entities relative to their magnitude.

The constellation lines and Hawaiian starlines are generated using the same methods as the
GameObject and ParticleSystem celestial sphere implementations. In the future, these could
also be converted to use ECS for additional increased performance.

Figure 19: An exterior view of the celestial sphere generated with Unity DOTS. All ~118,000
stars from the HIP catalog are generated as entities in the scene.

Discussion

To compare the efficiency of each implementation, a series of performance tests were
conducted by generating varying amounts of stars from the HIP catalog. The first test is
generating only prominent stars, or stars over +5.5 in magnitude, which includes 2617 stars in
the catalog. The second test generates only stars visible with the naked eye, or stars over +6.5
in magnitude, totaling 7982 stars. The last three tests generate roughly a quarter of the catalog
(30,000 stars), half of the catalog (60,000 stars), and the full catalog (117955 stars).

For accurate testing, Unity’s Profile Analyzer package was used to obtain data on the amount of
time it takes to create each frame in milliseconds. This data was recorded over 2700 frames,
which is roughly 30 seconds of time at 90 frames per second (FPS), for each of the five tests
and for each implementation method.

Figure 20: Unity’s Profile Analyzer displays statistics for a sample of frames.

Measuring performance by frame time is important because although it’s possible to have an
average frame rate of 60 FPS, if a game renders 59 frames in 0.75 seconds, but the next frame
takes 0.25 seconds to render, players will notice a stutter effect between the two frames[24]. This
is why it’s important to maintain a “time budget” based on target FPS, so users will get a
smoother and more consistent experience. Since we are aiming to hit an FPS target of 90 as
needed for VR, we are aiming for 11.1 miliseconds (ms) per frame[24].

The performance tests were conducted using the Vive headset to simulate VR on a computer
with the following specifications: Intel i5-9600k CPU, Nvidia GeForce GTX 1080, and 16 GB of
RAM. The computer was only running Unity Editor 2022.2.11f1 and the SteamVR application,
which were needed to run the simulation and complete the test. Although we ultimately want to
analyze the frame times to determine the efficiency of each implementation method, the

differences are stark even when viewing the average FPS for each test, as seen in Figure 21
below.

Figure 21: A chart showing the average FPS results for each implementation method, by each

of the five tests completed.

When considering the entirety of the data recorded for frame times, we can see similar variation
between each implementation, and can discern where each method starts struggling to maintain
frame times within the target budget of 11.1 ms.

Based on the test results compared in the chart below in Figure 22, if we are generating only the
prominent stars, all methods are about the same, the mean frame times are within the target
budge and the implementations run at nearly 90 FPS. By the time we reach a quarter of the
catalog, the GameObject method drops off drastically, with an average frame time nearly double
the target. The ParticleSystem method is able to keep the target frame times until the entire
catalog of stars is rendered. However, the DOTS implementation average frame times remain
around our target frame time for all tests, including the full star catalog.

The results show that using Unity’s Data Oriented Technology Stack, and designing the
implementation from a data-oriented approach provides the required performance benefits
needed to keep the application running at 90 FPS in VR, even when rendering nearly 118,000
star entities. For the specific needs of the Kilo Hōkū VR application, we don’t need to render the
entire catalog, and can stick to only displaying the stars that are visible with the naked eye.
Therefore, we could use any of the implementation methods on comparable hardware to the
specifications which were used in testing. However, if we want to use a generated celestial
sphere on the Quest 2, which has less processing power, using the DOTS implementation
would be most efficient based on these findings.

A couple of things to note from performing these tests: first, since they were run in the Unity
Editor so the Profile Analyzer package could be utilized to record frame time data, the recorded
frame times and FPS were affected by the editor itself, so the performance may be better if the
project has been built and run standalone outside of the editor. In testing, I also noticed some
overhead from the Unity XR packages which was affecting the frame times beyond the star
rendering, which may be worth digging into to determine if there’s a way to improve the time by
adjusting settings in the XR package. Lastly, test results were varying depending on the
direction the user was facing, this is due to the non-homogeneity of the stars in the sky. This
was more evident during the half and full catalog tests, where if the user is looking at a section
of the sky with a larger number of stars (such as around the milky way), frame times would
increase noticeably. To try to maintain accuracy in testing, I moved the headset in a consistent
pattern for all tests.

Reflection

In developing the different implementations of the virtual night sky, I learned more about how
each implementation method (GameObjects, ParticleSystem, DOTS) works in Unity from a
technical standpoint, and how to manipulate each of them to display specific data. I also learned
how to effectively use the Profiler and Profile Analyzer in Unity to measure the performance of
applications and which techniques are best to measure performance for VR applications, such
as using frame times over frames per second.

Prior to this project, I hadn’t had much exposure to data-oriented design, but through this project
I learned why it is important and how to use it to improve application performance. Since Unity
DOTS is relatively new to the Unity Engine, and the Pre-release version only just became
available on November 28, 2022, many structural methods and syntax changes had been made
between the experimental and pre-release versions, so a lot of information regarding DOTS was
outdated outside of Unity’s documentation. This made creating the DOTS implementation an
interesting challenge for me, but I learned so much from the experience and have a deeper
understanding of data-oriented design now. I plan to continue developing the DOTS
implementation from this project as DOTS shifts to an official release, and more features are
added which could be useful for Kilo Hōkū VR, like the Unity physics and netcode for entities
packages.

There were a number of features I wanted to include in this project, which I am planning to
implement in the future to enhance the celestial sphere beyond this DOTS implementation.
Since there are a number of specific stars that are important to know how to find in Hawaiian
wayfinding, such as the stars Hōkūleʻa (Arcturus) and Hikianalia (Spica), I want to make these
stars interactable so users can highlight them like they can with the constellations and starlines,
and display relevant information about them. I am hoping that Unity physics for entities is
stabilized soon with the Unity LTS release so that this is not too cumbersome to do. At the
moment, because entities and regular Unity GameObjects exist in different “realms” of a Unity
project, and Unity’s XR packages are based of off GameObject implementations, a lot of
additional work is needed in referencing and translating entities to match user movements and
to trigger interactions between entities and GameObjects.

Additional features could also be added to make the sky even more useful as a learning tool,
such as adding the moon and planets as entities, as these are also important to distinguish in
wayfinding and the planets were important culturally, known as hoku hele, “Traveling Stars”, or
hoku ‘ae’a, “Wandering Stars”[21], since they move across the sky differently than the movement
of the stars. Simulating weather effects which partially occlude the celestial sphere could also
be helpful in testing learners’ recognition skills.

In conclusion, this project has shown that a functional version of a generated celestial sphere
has been proven effective and is able to run in virtual reality. By utilizing Unity DOTS, this is
feasible with a large-scale data set like the HIP star catalog. My Kilo Hōkū development team
and I can use the findings of this project to enhance the next version of the Kilo Hōkū VR
application by replacing the original virtual celestial sphere with a generated one using the
DOTS implementation techniques. We will be able to use this DOTS version to display all stars
visible to the naked eye in virtual reality on the Quest 2 headset, ultimately making the
application more accurate and effective as a learning tool for classrooms.

Acknowledgments
Many thanks to Dr. Jason Leigh for advising me throughout the development of this project, and
for the recommendation to experiment with Unity DOTS. Additional thanks to my Kilo Hōkū VR
team, Patrick Karjala, Kari Noe, and Dean Lodes, for the encouragement on this project. Lastly,
I wanted to thank Johnny Thompson, Unity Developer from Turbo Makes Games, for his Unity
ECS 1.0 videos, which I found very helpful in first getting acquainted with DOTS.

References
1) Patrick Karjala, Dean Lodes, Kari Noe, Anna Sikkink, Jason Leigh; Kilo Hōkū—

Experiencing Hawaiian, Non-Instrument Open Ocean Navigation through Virtual Reality.
Presence: Teleoperators and Virtual Environments 2017; 26 (3): 264–280. DOI:
https://doi.org/10.1162/pres_a_00301

2) “Kilo Hōkū VR.” (n.d.). Retrieved from https://kilohokuvr.com/

3) Kari Noe, Patrick Karjala, Anna Sikkink, and Dean Lodes. 2020. A Demonstration of Kilo
Hōkū-Implementing Hawaiian Star Navigation Methods in Virtual Reality. In Extended
Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems (CHI
EA '20). Association for Computing Machinery, New York, NY, USA, 1–4.
https://doi.org/10.1145/3334480.3383156

4) “What are the system requirements?” VIVE Support, System Requirements. (n.d.).
Retrieved from https://www.vive.com/us/support/vive/category_howto/what-are-the-
system-requirements.html

5) “How Powerful is Oculus Quest 2 [Comparison with the Quest, Go, the PC and
Consoles]”. (n.d.). ServReality. Retrieved from https://servreality.com/news/how-
powerful-oculus-quest-2-comparison-with-the-quest-go-the-pc-and-consoles

6) VR sickness: Wang, Jialin & Shi, Rongkai & Zheng, Wenxuan & Xie, Weijie & Kao,
Dominic & Liang, Hai-Ning. (2023). Effect of Frame Rate on User Experience,
Performance, and Simulator Sickness in Virtual Reality. IEEE Transactions on
Visualization and Computer Graphics. PP. 1-11. DOI: 10.1109/TVCG.2023.3247057.

7) Bond, Jeremy Gibson. (2022). Introduction to Game Design, Prototyping, and
Development: From Concept to Playable Game with Unity and C# (3rd ed.). Addison-
Wesley Professional. ISBN-13: 9780136619949

8) Zotti, G., Hoffmann, S. M. ., Wolf, A. ., Chéreau, F. ., & Chéreau, G. . (2021). The
Simulated Sky: Stellarium for Cultural Astronomy Research. Journal of Skyscape
Archaeology, 6(2), 221–258. https://doi.org/10.1558/jsa.17822

https://doi.org/10.1162/pres_a_00301
https://kilohokuvr.com/
https://doi.org/10.1145/3334480.3383156
https://www.vive.com/us/support/vive/category_howto/what-are-the-system-requirements.html
https://www.vive.com/us/support/vive/category_howto/what-are-the-system-requirements.html
https://servreality.com/news/how-powerful-oculus-quest-2-comparison-with-the-quest-go-the-pc-and-consoles
https://servreality.com/news/how-powerful-oculus-quest-2-comparison-with-the-quest-go-the-pc-and-consoles
http://dx.doi.org/10.1109/TVCG.2023.3247057
https://doi.org/10.1558/jsa.17822

9) Zotti, Georg, Wolf, Alexander. (2023). Stellarium 23.1 User Guide. Retrieved from
https://github.com/Stellarium/stellarium/releases/download/v23.1/stellarium_user_guide-
23.1-1.pdf

10) “Constellationship Licensing.” (2020). GitHub – Stellarium/stellarium. Retrieved from
https://github.com/Stellarium/stellarium/discussions/790

11) Polynesian Voyaging Society. (n.d.). “Hawaiian Star Lines and Names for Stars.”
Hawaiian Voyaging Traditions. Retrieved from
https://archive.hokulea.com/ike/hookele/hawaiian_star_lines.html

12) van Leeuwen F. (2007). Validation of the new Hipparcos reduction. A&A 474 (2) 653-
664. DOI: 10.1051/0004-6361:20078357

13) “Hipparcos, the New Reduction: The Astrometric Catalogue.” (n.d.). CDS VizieR.
Retrieved from http://vizier.nao.ac.jp/viz-bin/VizieR-3?-source=I/311/hip2

14) “GameObjects.” (2017). Unity Documentation. Retrieved from
https://docs.unity3d.com/Manual/GameObjects.html

15) “Particle systems.” (n.d.). Unity Documentation. Retrieved from
https://docs.unity3d.com/Manual/ParticleSystems.html

16) Tonkin, Stephen. (2018). “Astronomy star catalogues: which to use and when.” Sky at
Night Magazine. Retrieved from
https://www.skyatnightmagazine.com/advice/skills/astronomy-star-catalogues-which-to-
use-and-when/

17) Christian, C., & Roy, J. (2017). A Question and Answer Guide to Astronomy (2nd ed.).
Cambridge: Cambridge University Press. DOI:10.1017/9781316681558

18) King, Bob. (2019). “Right Ascension & Declination: Celestial Coordinates for Beginners.”
Sky & Telescope. Retrieved from https://skyandtelescope.org/astronomy-
resources/right-ascension-declination-celestial-coordinates/

19) Chromey, F. (2010). To Measure the Sky: An Introduction to Observational Astronomy.
Cambridge: Cambridge University Press. DOI:10.1017/CBO9780511794810

20) “Part 1: Understanding data-oriented design.” (2021). Unity Learn. Retrieved from
https://learn.unity.com/tutorial/part-1-understand-data-oriented-design-
1?courseId=60132919edbc2a56f9d439c3&uv=2020.1

21) Polynesian Voyaging Society. (n.d.). “The Celestial Sphere.” Hawaiian Voyaging
Traditions. Retrieved from https://archive.hokulea.com/ike/hookele/celestial_sphere.html

https://github.com/Stellarium/stellarium/releases/download/v23.1/stellarium_user_guide-23.1-1.pdf
https://github.com/Stellarium/stellarium/releases/download/v23.1/stellarium_user_guide-23.1-1.pdf
https://github.com/Stellarium/stellarium/discussions/790
https://archive.hokulea.com/ike/hookele/hawaiian_star_lines.html
https://doi.org/10.1051/0004-6361:20078357
http://vizier.nao.ac.jp/viz-bin/VizieR-3?-source=I/311/hip2
https://docs.unity3d.com/Manual/GameObjects.html
https://docs.unity3d.com/Manual/ParticleSystems.html
https://www.skyatnightmagazine.com/advice/skills/astronomy-star-catalogues-which-to-use-and-when/
https://www.skyatnightmagazine.com/advice/skills/astronomy-star-catalogues-which-to-use-and-when/
https://doi.org/10.1017/9781316681558
https://skyandtelescope.org/astronomy-resources/right-ascension-declination-celestial-coordinates/
https://skyandtelescope.org/astronomy-resources/right-ascension-declination-celestial-coordinates/
https://doi.org/10.1017/CBO9780511794810
https://learn.unity.com/tutorial/part-1-understand-data-oriented-design-1?courseId=60132919edbc2a56f9d439c3&uv=2020.1
https://learn.unity.com/tutorial/part-1-understand-data-oriented-design-1?courseId=60132919edbc2a56f9d439c3&uv=2020.1
https://archive.hokulea.com/ike/hookele/celestial_sphere.html

22) “Systems Comparison.” (2023). Unity Manual: Entities 1.0.0-pre.65. Retrieved from
https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/systems-
comparison.html

23) Will, Brian. “Entities and components.” (2023). GitHub – Unity-
Technologies/EntitiyComponentSystemSamples. Retrieved from
https://github.com/Unity-
Technologies/EntityComponentSystemSamples/blob/master/Docs/entities-
components.md

24) “Performance Profiling Tips for Game Developers.” (n.d.). Unity Best Practices.
Retrieved from https://unity.com/how-to/best-practices-for-profiling-game-performance

25) “DOTS Roadmap” (n.d.). Unity Platform Roadmaps. Retrieved from
https://unity.com/roadmap/unity-platform/dots

https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/systems-comparison.html
https://docs.unity3d.com/Packages/com.unity.entities@1.0/manual/systems-comparison.html
https://github.com/Unity-Technologies/EntityComponentSystemSamples/blob/master/Docs/entities-components.md
https://github.com/Unity-Technologies/EntityComponentSystemSamples/blob/master/Docs/entities-components.md
https://github.com/Unity-Technologies/EntityComponentSystemSamples/blob/master/Docs/entities-components.md
https://unity.com/how-to/best-practices-for-profiling-game-performance
https://unity.com/roadmap/unity-platform/dots

