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Abstract 

In this paper I investigate three methods to generate an accurate representation of the night sky 
and determine their suitability for use in Virtual Reality (VR). Developed in Unity3D, these 
implementations were created with 1) GameObjects, 2) ParticleSystem, and 3) Unity’s Data 
Oriented Technology Stack (DOTS). Comparing the performance of these three versions 
through a series of tests, the DOTS implementation was found to maintain target frame times 
across all tests, which included visualizing all stars from the Hipparcos star catalog. This project 
will be integrated into the next iteration of the Kilo Hōkū VR application, which will allow my 
development team and I to make the application more accessible as an educational tool. 

 

Background 

Kilo Hōkū VR, a virtual reality simulation of sailing on the double-hulled sailing canoe Hōkūleʻa, 
began as a class project in 2016, developed by Patrick Karjala, Kari Noe, Dean Lodes, and me. 
Our initial goal was to discover how a virtual reality (VR) environment could aid in the learning 
and teaching of Modern Hawaiian wayfinding. Users experience being onboard the Hōkūleʻa on 
the open ocean, where they can view stars and highlight constellations, and see the Hawaiian 
star compass in context. With these tools, users can apply Modern Hawaiian wayfinding 
techniques to navigate and sail the Hōkūleʻa between two Hawaiian islands. Teachers are also 
able to test a user’s existing knowledge within the virtual environment through use of a teacher 
controller, which allows them to turn on or off specific features in the simulation, such as the star 
compass, celestial equator or meridian lines, and change the time or location of the user[1]. 
 

 
Figure 1: Kilo Hōkū VR from a user’s view within virtual reality at the start of the simulation[1] 

 
 
Kilo Hōkū VR was developed using the Unity3D game engine and was originally designed for 
the HTC Vive VR headset. The Vive headset was chosen due to the fidelity of tracking, which 
helped in making the simulation easier to use so that it would be more approachable, especially 
for users new to virtual reality environments[3]. Version 1.0 of Kilo Hōkū VR was released in 



2020 on itch.io, making it available for anyone with access to the Vive to download and use[2]. 
Kilo Hōkū VR has since undergone continual development and experimentation as my team and 
I work to build the simulation into a more effective teaching tool. In collaborating with outside 
stakeholders to further develop the application, it became apparent that several significant 
changes would be needed for the simulation to become more accessible to educators.  
 

 
Figure 2: a user highlighting a constellation in Kilo Hōkū VR under instructor guidance[1] 

 
 
My development team determined that the most beneficial update to the application would be to 
port it to a more approachable VR headset. The Vive headset connects to a computer, which 
runs the VR application and sends the visuals out to the headset display. To track the player’s 
movements, lighthouse boxes are mounted around the space that send out infrared lasers, 
which the Vive headset and controllers detect and use to generate positional information for the 
VR application. To run the Vive, a computer is required with the specifications of: an Intel Core 
i5-4590/AMD FX 8350 Processor, an NVIDIA GeForce GTX 1060 or AMD Radeon RX 480 
GPU, and at least 4GB RAM[4]. 
 
The Meta Quest 2 (previously Oculus Quest 2) is not only more affordable than the Vive, but 
also operates as a standalone device which does not require tethering to a computer, and uses 
inside-out tracking which removes the need for external equipment such as lighthouses. This is 
favorable for classrooms as they would only need to purchase the Quest 2 headset to run the 
application. The lower cost of the Quest 2 also means that educators would be able to purchase 
more Quest 2 headsets overall, instead of needing to purchase both a headset and a computer 
that meets the required specifications. Additionally, there is much less setup required with the 
Quest 2, increasing the ease of use in a classroom setting. 
 
However, the Quest 2’s specs include a Qualcomm Snapdragon XR2 processor, Adreno 650 
GPU, and 6GB of RAM[5], which is less processing power than we would get from a computer 
running the Vive. Due to these hardware limitations, many adjustments needed to be made to 
the Kilo Hōkū VR simulation to ensure it not only runs on the hardware, but also at a high 
enough frame rate to keep users from getting simulation sickness. Applications running below 



60 frames per second (FPS) can cause simulation sickness in VR, while applications running at 
120 FPS and above has shown better user performance and VR experience overall[6].  
 
With support and feedback from stakeholders, my development team has produced a functional 
Quest 2 port of Kilo Hōkū VR, with a public release planned for later this year. 
 
 
Motivation 
 
Another significant update needed for Kilo Hōkū VR was to improve the original implementation 
of the sky to allow for more precise interactions and improved accuracy of the sky visualization. 
Therefore, I chose to explore different methods of implementing a generated sky for VR for my 
master’s capstone project. The initial implementation of the sky in Kilo Hōkū VR consisted of a 
sphere object with reversed normals to display a texture on the inside of the sphere. A “star 
field” texture was created using a high resolution full sky image from NASA’s Scientific 
Visualization Studio, then applied to the sphere[3]. This created a virtual celestial sphere, 
appearing like a dome with the user and Hōkūleʻa inside at the center, from which the user 
would see the stars around them as if they were looking at a clear night sky.  
 

Figure 3: The concept of a celestial sphere is an imaginary sphere with the Earth at the center. 
Looking overhead, we see the half of the sphere as the sky as we see from Earth, appearing as 

a dome. The other half of the sphere is below the horizon and not visible[21] 
 

 
In order to allow users to point at the sky to identify constellations and Hawaiian starlines, 
collider boxes were manually added around each group of stars included in a constellation. 
Upon triggering the collider with a raycast, which is presented as a laser pointer in the 



simulation, the texture on the celestial sphere object is swapped out with another texture with 
the constellation lines shown for the corresponding constellation.  
 

 
Figure 4 (left): VR view of a user highlighting a constellation in Kilo Hōkū VR 

Figure 5 (right): Kilo Hōkū VR’s celestial sphere with constellation colliders as seen externally[1] 
 
 
This method was a simple way to create a mostly accurate sky and include the interactions we 
wanted, but it could not be easily improved upon in its current state. With 90 texture images (88 
western constellations, the Hawaiian starlines, and the default sky with no lines or constellations 
highlighted), each at a resolution of 8192px by 4096px as required to keep the image clear in 
VR, the act of constantly swapping the individual textures on the celestial sphere is not very 
efficient. Adding the ability to highlight individual stars or show other cultural constellations 
would not be a quick addition as colliders would need to be manually added in the Unity Editor, 
since there isn't any positional data for the stars in the simulation. 
 
Additionally, some visual defects are apparent in the star positions and appearances near the 
poles where the texture doesn’t match up properly on the sphere. This is problematic because 
the north star (Polaris/Hōkūpaʻa) is a significant star in Hawaiian wayfinding, as part of Ka 
Iwikuamoʻo, “The Backbone” Hawaiian starline. Not only is Polaris/Hōkūpaʻa a quick way to 
orient cardinal direction since the star is nearly directly on the north celestial pole, but the Ka 
Iwikuamoʻo starline runs from this star across the sky to the Southern Cross constellation, also 
known as Hānaiakamalama, which is near the south celestial pole[11].  
 
 
 



 
Figure 6 (top): Visual defects near the north celestial pole. Polaris/ Hōkūpaʻa star appears like 

an arrow shape, and the stars around it are stretched out into lines. 
Figure 7 (bottom): The same region of sky as Figure 6, as displayed in Stellarium, 

demonstrating a correct visualization of these stars. 
 
 
 
The Pleiades, known as Makali‘i, is a cluster of seven small stars. They rise before the stars in 
the Hawaiian starline of “Ke Ka o Makali‘i”, and are used as a visual guide during the first month 
of the year (November – December)[11]. Unfortunately, in Kilo Hōkū VR, they don’t display true to 
real life due to the texture resolution, which was reportedly confusing students who were using 
the app in a classroom setting. Generating these stars will improve the clarity of the visualization 
compared to using the texture image, resolving this issue. 



 

Figure 8 (left): The Pleiades/ Makali‘i as they are displayed in Kilo Hōkū VR, which appears 
blurred and individual stars are less distinct. 

Figure 9 (right): The Pleiades star cluster as displayed in Stellarium, which is truer to reality. 
 
 
Ultimately, generating the stars based off of star catalog data will help resolve these visual 
issues in addition to providing added possibilities to improve interactions and display other 
useful information in the application. 
 
 
 
Approach  

My goal with this project was to create a new virtual celestial sphere which could be utilized in 
Kilo Hōkū VR, one in which each star would be generated based on positional and 
observational data from a star catalog. With the star position data in the simulation, the stars 
themselves will appear clearer and accurately placed. The Hawaiian starlines, constellation 
lines, and colliders can also be generated from the positional data, instead also of needing to 
manually create them as was done in Kilo Hōkū VR 1.0, while retaining the interactivity aspects 
needed. This also gives us more flexibility in adding in other cultural constellations or helpful 
visuals in the future as well. Generating each star also makes it possible to make them 
individually interactable, meaning the user could point at any star and view relevant information 
such as star name, which constellation or Hawaiian starline it belongs to, and any other facts we 
want to display. 
 
This generated starfield needs to run alongside the other elements of our Kilo Hōkū VR 
simulation, which include the ocean system, the Hōkūleʻa model, the star compass, the meridian 
and celestial equator lines, and the island models. In addition, it needs to be able to run in 



virtual reality, ultimately on a less robust hardware device such as the Quest 2. To determine a 
suitable solution which meets the aforementioned requirements, I created a series of 
implementations which used different methods to generate the stars with the intent to compare 
them to discern the most efficient and effective method to use for the next version of Kilo Hōkū 
VR.  
 
 
Method  

In Unity, I developed three implementations of a generated starfield using different methods to 
create stars: stars as standard GameObjects, stars as individual particles in Unity’s 
ParticleSystem, and stars as entities using Unity’s new Data Oriented Technology Stack 
(DOTS). 
 
Independent of implementation method, in order to create an accurate representation of the sky, 
star data from a catalog needs to be imported into the simulation. The celestial sphere in Kilo 
Hōkū VR is intended to be a tool for learning the Hawaiian starlines and constellations to build 
the visual recognition skills needed to navigate using Hawaiian wayfinding techniques. 
Therefore, it is most important to display the stars which are visible to the naked eye. I decided 
to use the Hipparcos catalog (HIP), which was updated with re-processed data in 2007 and 
contains 117,955 stars[13]. The HIP catalog was created from data obtained by the HIPPARCOS 
space astrometry satellite, with the goal of determining parallaxes of stars that were brighter 
than around +12.4 in apparent magnitude[19]. For context, the apparent brightest star from Earth, 
Sirius, is a magnitude of -1.5, and the naked eye limit is about +6.5[17], so the data from HIP 
provides stars with magnitudes beyond only the stars needed for visualizing in Kilo Hōkū VR.  
 

Figure 10: A chart of apparent magnitude scale[17] 
 
 
 
The HIP catalog can be downloaded from the Vizier Catalogue Service[13] and stored as a CSV 
file, then read into the Unity scene via a C# script using the System.IO file reading methods. 
From there, the imported data gives us coordinates for each star, which are used to place the 
stars in their correct locations in the scene to create a virtual celestial sphere. Star coordinates 
are given in two numbers, Declination and Right Ascension. These are analogous to latitude 
and longitude coordinates on the Earth. 



Declination is the angle of a star away 
from the celestial equator, an 
imaginary line around the middle of 
the celestial sphere which is on the 
same plane as the Earth’s equator. 
Celestial bodies to the north of the 
celestial equator have positive 
declinations up to +90 degrees (the 
north celestial pole), while bodies 
south of the celestial equator have 
negative declinations up to -90 
degrees (the south celestial pole)[21].  
 
Right Ascension gives the position of 
a celestial body in relationship to lines 
from the north to south celestial poles, 
like longitude lines, which intersect 
the celestial equator at right angles.  
Right Ascension is given in hours and 
minutes, with 0 and 24 hours equal to 
the same point. 24 hours is used 
because the Earth rotates once every 
24 hours, which equals one revolution 
of the celestial sphere. The zero point 

for Right Ascension is based on the position of the sun at vernal equinox[21]. In the HIP catalog, 
the Right Ascension has already been converted into a value in degrees. 
 
These coordinate values can be converted into x,y,z coordinates using a spherical to cartesian 
conversion formula. Given a radius value (pre-defined at 1000 for this project), the Right 
Ascension (ra) and Declination (dec) values are plugged into the conversion formula, producing 
3D coordinates (x,y,z) at which to place each star in the Unity scene. 
 

 

 
Figure 12: Code used to convert star coordinates in RA and Dec into 3D coordinates. 

 
 
The catalog also provides recorded magnitude values for each star. That value can be used to 
adjust the scale of the star in the simulation, so higher magnitude stars appear larger in the 
virtual celestial sphere. This magnitude value can also be used to determine which stars to 
display or omit based on a threshold, for example, displaying only prominent stars (above +5.5 
magnitude, 2617 stars from the HIP catalog) or only stars visible to the naked eye (above +6.5 
magnitude, 7982 stars). These thresholds are used later in comparing the efficacy of the 
different methods of implementing the virtual sky. 
 

Figure 11: Right Ascension and Declination on the 
celestial sphere[18] 



  
Figure 13: The stars in the constellation of Orion with a red laser pointer, as seen from inside 
the generated celestial sphere in VR. Stars are placed and sized based on data from the HIP 

catalog.  
 
 

The HIP catalog was also used by Stellarium, a free, open-source planetarium software 
available for desktop and mobile devices[8]. Stellarium developers created a series of 
constellationship files, which map out which stars are connected to other stars within each 
constellation[9]. Since these mappings are based on HIP catalog star data, and Stellarium has 
given permission to use their constellationship files[10], they can also be imported into this 
simulation project to generate the lines to create the western constellations and Hawaiian 
starlines. Although these constellationship files could be created manually, being able to use the 
files from Stellarium saved a lot of time and allowed me to avoid re-doing work that has already 
been done. 
 

 
Figure 14: Hawaiian Starlines constellationship file from Stellarium, which links star IDs to other 
stars which they are connected to in the same constellation, making it possible to generate the 
corresponding lines in the simulation when combined with the HIP catalog star position data. 

 



 

 
 

Figure 15 (left): External view of a generated celestial sphere with constellation lines.  
Figure 16 (right): External view of a generated celestial sphere with Hawaiian starlines in green. 

 
 

GameObject Implementation 
 
GameObjects are the fundamental objects in Unity that represent the elements in a game or 
application, such as characters, props, lights, cameras, etc. Properties are given to 
GameObjects via components. Depending on what kind of object is needed, different 
combinations of components are added to a GameObject[14]. Prefabs can be created from 
GameObjects to be used as a template and reused in the project without having to be 
reconfigured. 
 
For this implementation, each star is represented by a GameObject prefab with a sphere mesh. 
A star generator script was created to instantiate each star GameObject in the scene, based on 
the star catalog position data, and scale the GameObject using the corresponding magnitude 
value. Constellations and Hawaiian starlines were added to the scene using Unity’s 
LineRenderer class based on the star position data described in the constellationship files. 
Colliders are generated around these lines and set to detect when the user’s laser collides, 
displaying the constellations western name and Hawaiian name, if applicable. 
 
 
ParticleSystem Implementation 
 
Unity’s built-in ParticleSystem simulates behavior for individual particles and renders many 
small images to create a visual effect. Each particle in the system represents a graphical 
element and are all simulated collectively to create impressions of a complete effect. This is 
useful when rendering dynamic or non-solid objects, such as smoke or fire. The built-in particle 



system also allows particles to interact with Unity’s underlying physics system, so collision 
events can be detected on individual particles[15].  
 
The implementation of this system consisted of creating a ParticleSystem in the Unity scene, 
and then using a script to populate the ParticleSystem Particle array with each star, specifying 
its position and size. After all star particles have been added to the particle array, the 
SetParticles function is called on the ParticleSystem, which adds the particles to the scene and 
renders them. Constellation and starlines are generated in the same way as described above in 
the GameObject implementation. 
 
 
DOTS Implementation 
 
The final implementation uses Unity’s Data Oriented Tech Stack, or DOTS, a combination of 
technologies and packages that provide a data-oriented design approach to building games and 
simulations in Unity[7]. At the time of creating this implementation, the DOTS Entities package 
version 1.0 (also known as Entity Component System or ECS) is in pre-release, so an official 
release is still in active development by Unity[25].  
 
Since simulating the full catalog of stars is quite intensive in addition to supporting virtual reality, 
making the most efficient use of the CPU processing power is important. Developing with data-
oriented design (DOD) can aid developers in gaining the performance needed for intensive 
data-focused applications. Utilizing ECS requires a shift in approach from the object-oriented 
programming (OOP) paradigm to data-oriented design. Developers must consider what data is 
needed for their application and how to best structure it in memory so the CPU can efficiently 
access the data while running the systems to process it. Instead of having individual objects 
with specific components on each (such as color or position), in DOD these components would 
be grouped together into arrays so that systems can iterate over the arrays to transform data[20]. 

 

 
Figure 17: A comparison of how data is processed with OOP and DOD[20] 



Figure 17 shows the difference between how the CPU processes an example scene with 
Sphere classes using OOP and DOD. The Unity DOTS best practices guide describes Figure 
17 as follows: “In OOP, the code iterates over an array of Sphere classes to check the Color of 
each one and set the Position of the green ones. Although the array is packed with contiguous 
data, it only contains references to Sphere classes, and the actual data can be scattered 
throughout memory, resulting in cache misses. In DOD, Spheres are decomposed into Color 
and Position components and packed into buffers, resulting in fewer cache misses and much 
faster processing”[20]. 
 
In Unity’s ECS, an entity is a lightweight, unmanaged alternative to a GameObject, and is 
essentially a unique identified number. Data for each entity is stored as associate components, 
usually in the form of struct values. Aspects in ECS are also useful as they provide an object-
like wrapper over an entity’s components, defining accessible and modifiable component 
values, and simplifying component-related code[23]. 
 
A collection of entities is known as a world. A world also owns a set of systems, which are run 
on the main thread, typically once per frame. These systems are used to apply logic to the 
entities and to transform data[23]. Another benefit of ECS is that it makes it possible for 
developers to take advantage of Unity’s Burst compiler for performance gains. There are two 
types of systems in ECS, the first is the ISystem, which is compatible with Burst and therefore 
provides better performance, while the other is SystemBase, which is slower than ISystem since 
it is not Burst compiled but allows for use of managed code[22]. 
 
Implementing the celestial sphere in ECS is a bit more involved than the other two methods 
described previously. Essentially, each star is generated as an entity based on the star prefab 
used in the GameObject implementation. To do this, a subscene must be created in the Unity 
scene, which will contain the entities. A parent “Starfield” entity is created using an 
implementation of the Baker 
Authoring class, which is done in a 
C# script. This same script contains 
a MonoBehavior class (Unity’s base 
class) that have variable 
declarations for StarfieldRadius 
(celestial sphere radius value used 
in converting star coordinates), 
StarCount (number of stars to 
generate), and StarPrefab (prefab 
to create our stars from), which can 
be accessed and adjusted from the 
Unity editor. Those values are then 
used in the Baker class when 
adding the component to the 
starfield. 
 
The Baker class creates the 
starfield entity and sets the values 
for StarfieldRadius, StarCount, and 
the StarPrefab using a component 
struct called “StarfieldProperties”. 
These values are made accessible by 
systems and other entities via an 

Figure 18: Code to author the Starfield parent entity. 



aspect struct called “Starfield Aspect”. Another Baker class is needed to author individual star 
entities, which is done in a separate system script. 
 
There are two systems at work in this implementation, the first is called “StarfieldGenerator”, 
which implements ECS ISystem and instantiates the star entities in the subscene. These 
entities are all first initialized at the zero point in the scene (0,0,0) at a scale of 1. The second 
system implements SystemBase. This system, called “StarPlacement”, imports the HIP catalog 
data, and schedules jobs to update the star entities to their correct positions in the scene and 
adjust the scale of star entities relative to their magnitude. 
 
The constellation lines and Hawaiian starlines are generated using the same methods as the 
GameObject and ParticleSystem celestial sphere implementations. In the future, these could 
also be converted to use ECS for additional increased performance. 
 

 
 

Figure 19: An exterior view of the celestial sphere generated with Unity DOTS. All ~118,000 
stars from the HIP catalog are generated as entities in the scene. 

 
 
 



Discussion 

To compare the efficiency of each implementation, a series of performance tests were 
conducted by generating varying amounts of stars from the HIP catalog. The first test is 
generating only prominent stars, or stars over +5.5 in magnitude, which includes 2617 stars in 
the catalog. The second test generates only stars visible with the naked eye, or stars over +6.5 
in magnitude, totaling 7982 stars. The last three tests generate roughly a quarter of the catalog 
(30,000 stars), half of the catalog (60,000 stars), and the full catalog (117955 stars).  
 
For accurate testing, Unity’s Profile Analyzer package was used to obtain data on the amount of 
time it takes to create each frame in milliseconds. This data was recorded over 2700 frames, 
which is roughly 30 seconds of time at 90 frames per second (FPS), for each of the five tests 
and for each implementation method.  
 

 
Figure 20: Unity’s Profile Analyzer displays statistics for a sample of frames. 

 
 
Measuring performance by frame time is important because although it’s possible to have an 
average frame rate of 60 FPS, if a game renders 59 frames in 0.75 seconds, but the next frame 
takes 0.25 seconds to render, players will notice a stutter effect between the two frames[24]. This 
is why it’s important to maintain a “time budget” based on target FPS, so users will get a 
smoother and more consistent experience. Since we are aiming to hit an FPS target of 90 as 
needed for VR, we are aiming for 11.1 miliseconds (ms) per frame[24]. 
 
The performance tests were conducted using the Vive headset to simulate VR on a computer 
with the following specifications: Intel i5-9600k CPU, Nvidia GeForce GTX 1080, and 16 GB of 
RAM. The computer was only running Unity Editor 2022.2.11f1 and the SteamVR application, 
which were needed to run the simulation and complete the test. Although we ultimately want to 
analyze the frame times to determine the efficiency of each implementation method, the 



differences are stark even when viewing the average FPS for each test, as seen in Figure 21 
below.  
 

 
Figure 21: A chart showing the average FPS results for each implementation method, by each 

of the five tests completed.  
 
 
When considering the entirety of the data recorded for frame times, we can see similar variation 
between each implementation, and can discern where each method starts struggling to maintain 
frame times within the target budget of 11.1 ms.  
 
Based on the test results compared in the chart below in Figure 22, if we are generating only the 
prominent stars, all methods are about the same, the mean frame times are within the target 
budge and the implementations run at nearly 90 FPS. By the time we reach a quarter of the 
catalog, the GameObject method drops off drastically, with an average frame time nearly double 
the target. The ParticleSystem method is able to keep the target frame times until the entire 
catalog of stars is rendered. However, the DOTS implementation average frame times remain 
around our target frame time for all tests, including the full star catalog. 
 
 
 
 
 
 
 
 
 



 
 
 
The results show that using Unity’s Data Oriented Technology Stack, and designing the 
implementation from a data-oriented approach provides the required performance benefits 
needed to keep the application running at 90 FPS in VR, even when rendering nearly 118,000 
star entities. For the specific needs of the Kilo Hōkū VR application, we don’t need to render the 
entire catalog, and can stick to only displaying the stars that are visible with the naked eye. 
Therefore, we could use any of the implementation methods on comparable hardware to the 
specifications which were used in testing. However, if we want to use a generated celestial 
sphere on the Quest 2, which has less processing power, using the DOTS implementation 
would be most efficient based on these findings. 
 
A couple of things to note from performing these tests: first, since they were run in the Unity 
Editor so the Profile Analyzer package could be utilized to record frame time data, the recorded 
frame times and FPS were affected by the editor itself, so the performance may be better if the 
project has been built and run standalone outside of the editor. In testing, I also noticed some 
overhead from the Unity XR packages which was affecting the frame times beyond the star 
rendering, which may be worth digging into to determine if there’s a way to improve the time by 
adjusting settings in the XR package. Lastly, test results were varying depending on the 
direction the user was facing, this is due to the non-homogeneity of the stars in the sky. This 
was more evident during the half and full catalog tests, where if the user is looking at a section 
of the sky with a larger number of stars (such as around the milky way), frame times would 
increase noticeably. To try to maintain accuracy in testing, I moved the headset in a consistent 
pattern for all tests.  
 
 



Reflection 

In developing the different implementations of the virtual night sky, I learned more about how 
each implementation method (GameObjects, ParticleSystem, DOTS) works in Unity from a 
technical standpoint, and how to manipulate each of them to display specific data. I also learned 
how to effectively use the Profiler and Profile Analyzer in Unity to measure the performance of 
applications and which techniques are best to measure performance for VR applications, such 
as using frame times over frames per second. 

Prior to this project, I hadn’t had much exposure to data-oriented design, but through this project 
I learned why it is important and how to use it to improve application performance. Since Unity 
DOTS is relatively new to the Unity Engine, and the Pre-release version only just became 
available on November 28, 2022, many structural methods and syntax changes had been made 
between the experimental and pre-release versions, so a lot of information regarding DOTS was 
outdated outside of Unity’s documentation. This made creating the DOTS implementation an 
interesting challenge for me, but I learned so much from the experience and have a deeper 
understanding of data-oriented design now. I plan to continue developing the DOTS 
implementation from this project as DOTS shifts to an official release, and more features are 
added which could be useful for Kilo Hōkū VR, like the Unity physics and netcode for entities 
packages. 

There were a number of features I wanted to include in this project, which I am planning to 
implement in the future to enhance the celestial sphere beyond this DOTS implementation. 
Since there are a number of specific stars that are important to know how to find in Hawaiian 
wayfinding, such as the stars Hōkūleʻa (Arcturus) and Hikianalia (Spica), I want to make these 
stars interactable so users can highlight them like they can with the constellations and starlines, 
and display relevant information about them. I am hoping that Unity physics for entities is 
stabilized soon with the Unity LTS release so that this is not too cumbersome to do. At the 
moment, because entities and regular Unity GameObjects exist in different “realms” of a Unity 
project, and Unity’s XR packages are based of off GameObject implementations, a lot of 
additional work is needed in referencing and translating entities to match user movements and 
to trigger interactions between entities and GameObjects. 

Additional features could also be added to make the sky even more useful as a learning tool, 
such as adding the moon and planets as entities, as these are also important to distinguish in 
wayfinding and the planets were important culturally, known as hoku hele, “Traveling Stars”, or 
hoku ‘ae’a, “Wandering Stars”[21], since they move across the sky differently than the movement 
of the stars. Simulating weather effects which partially occlude the celestial sphere could also 
be helpful in testing learners’ recognition skills. 

In conclusion, this project has shown that a functional version of a generated celestial sphere 
has been proven effective and is able to run in virtual reality. By utilizing Unity DOTS, this is 
feasible with a large-scale data set like the HIP star catalog. My Kilo Hōkū development team 
and I can use the findings of this project to enhance the next version of the Kilo Hōkū VR 
application by replacing the original virtual celestial sphere with a generated one using the 
DOTS implementation techniques. We will be able to use this DOTS version to display all stars 
visible to the naked eye in virtual reality on the Quest 2 headset, ultimately making the 
application more accurate and effective as a learning tool for classrooms. 
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